
Speeding Up Learning in Real-time Search through Parallel Computing

Vinicius Marques Luiz Chaimowicz Renato Ferreira

Department of Computer Science
Universidade Federal de Minas Gerais

Belo Horizonte, Brazil
{allonman,chaimo,renato}@dcc.ufmg.br

Abstract—Real-time search algorithms solve the problem of
path planning, regardless the size and complexity of the maps,
and the massive presence of entities in the same environment.
In such methods, the learning step aims to avoid local minima
and improve the results for future searches, ensuring the
convergence to the optimal path when the same planning
task is solved repeatedly. However, performing search in a
limited area due to real-time constraints makes the run to
convergence a lengthy process. In this work, we present a
parallelization strategy that aims to reduce the time to conver-
gence, maintaining the real-time properties of the search. The
parallelization technique consists on using auxiliary searches
without the real-time restrictions present in the main search.
In addition, the same learning is shared by all searches. The
empirical evaluation shows that even with the additional cost
required to coordinate the auxiliary searches, the reduction in
time to convergence is significant, showing gains from searches
occurring in environments with fewer local minima to larger
searches on complex maps, where performance improvement
is even better.
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I. INTRODUCTION

In the context of video games or robotics, there are some

situations that may require fast responses, or even real-time

responses. In these situations, the AI engine can be respon-

sible for hundreds to thousands of agents traversing huge

and complex maps simultaneously, making the path planning

time becomes a major factor. Real-time search methods, like

LRTA* [1], solve this problem without compromising time

restrictions. These algorithms perform local searches, only

planning a few actions per time in a limited area, therefore

giving a fast response. Real-time search also has the ability

to perform searches on dynamic environments, that can

change their structures over time. Such ability is possible be-

cause these methods interleave planning and plan execution

with a learning step, which refines a cost function (formed

by heuristic estimates) that guides the upcoming actions. The

learning acquired is used in subsequent searches, converging

to a shortest path when solving the same planning task

repeatedly [2].

However, the fact that such algorithms amortize learning

over several planning episodes makes the convergence a

lengthy process. In order to keep the real-time premise and

give fast responses, the learning can only be applied to a

delimited area. This process to convergence, also named run,

is then an expensive process, that often has to be done under

real-time constraints. Thus, the question discussed here is

how learning can be accelerated so that fewer repeated

path-finding experiences are needed before converging to an

optimal path.

In this paper we exploit parallelization to speed up learn-

ing, and therefore the run to convergence. It is important

to notice that the parallelization does not aim to reduce

the time to a goal in a single search. The objective of the

parallelization is to reduce the time spent to converge to the

optimal path, i.e., the amount of searches performed until

the minimal path is reached.

We focus on data parallelism, performing the same search

in parallel under different regions of the map. Moreover, all

the searches share the same learning, which means that they

have to use the same heuristic values. The parallelization

is defined as a master/slave based protocol, where the main

core both coordinates tasks as well as execute them under

real-time constraints.

We have designed the parallelization considering a dis-

tributed memory system, with data synchronization between

the cores. The implementation was made on a current con-

sole architecture, the PlayStation 3’s Cell Broadband Engine

Architecture [3]. The choice of this architecture is justified

by the fact that real-time search algorithms have a wide

application on the AI present in current games. Although

Cell/B.E. has singular details that differs it from other

architectures, it is important to notice that this choice does

not imply in limitations on the application of the technique

introduced in this paper. The parallelization proposed here

fits any architecture, including a possible port to general

purpose programing on graphical processing units (GPU),

like CUDA1. In fact, this hypothesis was even considered,

but discarded due to possible competition with CGI in

video games, where tasks are processing intensive. We

also implemented a particular task sorting technique, used

to define the priority of the tasks related to the searches

performed on the auxiliary cores.

The rest of the paper is divided as follows: Section II gives

a brief overview about the research related to our work.

1See The CUDA Programming Guide, 1.1.1



We describe details of the parallelization methodology in

Section III, also showing the task composition, distribution

and how to define priority for them. Section IV describes

the results of our experiments. Finally, Section V concludes

the paper.

II. RELATED WORK

In this section we present a brief overview of some

related works that focus on speedup convergence of real-

time search. For further analysis of general performance

improvements on search algorithms, please refer to Rios &

Chaimowicz [4].

Researchers have attempted to speedup the convergence of

real-time search methods without increase search depth, the

lookahead. Early methods aims speedup by sacrificing the

optimality of the resulting path [5], [6], allowing suboptimal

solutions, with a margin of error, to reduce the total amount

of learning performed.

FALCONS (Fast Learning and Converging Search) [7]

shows that tie-breaking criterion crucially influences the

convergence speed, and then uses an alternatively way to

select successors: instead of minimizing the estimated cost

to go, it considers the estimated cost from the start (that can

be outside the current local search space) to goal, via the

successor state it moves to.

LRTA*(k) [8] is an LRTA* based algorithm with an

alternative strategy to the propagation of changes of heuristic

estimates, named bounded propagation. This strategy prop-

agates these changes on the successors of the current state,

limited by a parameter k. The LRTA*(k) records heuristic

estimates that are closer to their exact values than those

recorded by LRTA*, therefore converging faster.

Bulitko et al. [9] combine automatic state abstraction

with learning real-time search, dynamically building state

abstractions that allows the learning to generalize updates

to the heuristic function. This allows more states to have

the heuristic values updated, thereby speeding up learning.

The Local Search Space LRTA* (LSS-LRTA*) [10] con-

siders the learning space as the same as local search space,

determined by a bounded A* search. It also uses a different

way to update heuristics by performing a Dijkstra search. A

larger local search space guarantees more heuristic updates

while planning. In addition, the execution of a Dijkstra

search over the learning space optimizes the range of learn-

ing, speeding up the run to convergence.

All those works cited above have concentrated the efforts

on modifying the LRTA* original structure to reduce the

convergence time. The resulting methods do not modify

the strictly sequential behavior of the original method. Our

work differs form the others by introducing the paradigm

of parallel programming to real-time search. In fact, it is

important to note that the parallelization proposed here fits

any real-time search algorithm that behaves like LRTA* and

all those discussed above.

III. PARALLELIZATION METHODOLOGY

In this section we explain the methodology used for the

parallelization. We based our design on a master/slave proto-

col, with the exception that the master not just manages the

tasks, but also performs a search under real-time constraints.

The execution flow on the main core divides in three

sections: task processing, task management, and synchro-

nization with the auxiliary cores. Task processing on the

main core is basically an iteration of a real-time search

algorithm, such as LSS-LRTA* [10]. The only difference

here is related to the way heuristic values are stored: instead

of a hash table, a sparse matrix is used. Considering a

distributed memory system, there will be many memory

transfers between cores. The use of a sparse matrix reduces

the time spent with synchronization, eliminating steps of

filling buffers. Due to the fact that the system can have

limited memory (which is the case of the Cell/B.E.), a sparse

matrix is also a better choice compared to a distributed hash,

because it allows a better control of the size of data that will

be transferred.

Figure 1: The task composition.

Before explaining how the master manages tasks, we first

explain the concept of a task. A task is formed by 3 elements:

a start node, the local search space, and a goal node. The

structure of a task is shown in Figure 1. For an arbitrary map

of dimensions n×m, each tile in the figure matches a node in

the grid representation of the map. A tile keeps information

about the node navigability (if the node is passable or not),

and the heuristic value from that position to the goal node

Sg . The tile denoted by S represents the node where the

auxiliary search will begin. The darker tiles represent the

local search space, area delimited by the lookahead d. The

larger is d, the larger will be the task size. Moreover, a larger

d for the auxiliary searches imply on larger local search

spaces, and therefore deeper searches, compared to the main

search, which allows more data to be processed, and more

heuristic values to be updated.



Tasks are created by the master core according to the

following rule: each time the main search has traveled a

path with an accumulated length multiple of d, nodes from

this resulting path are chosen to form the S parameter of

the new tasks. The first node selected to compose a task is

the last one visited in the path. The second one will be the

node on the path d nodes distant from the first, and so on

for the next selected nodes. The distance that separates the

selected nodes aims to avoid the overlapping of local search

spaces between tasks, spreading the searches along the map.

After being created, a task is placed into a heap, to be

distributed to the auxiliary cores. In order to reduce the time

spent by the master with task creation, the tasks are created

only with the S and Sg parameters. The main core lead

this job to the auxiliary cores. This optimization reduces the

time spent with synchronization, in order to keep real-time

constraints on the master.

Tasks into the heap are sorted in a particular way, that

differs from a simple FIFO queue. For the sorting, we

created a rule based on swarm behavior [11]. Tasks are

sorted inside the heap based on an amount, named trace,

present in the tile that represents the S state. Basically, a

node accumulates traces according to the following rule:

each time a complete search is performed by the main core,

a comparison is made between the cost of this search and a

stored cost of a previous search. If the search cost is lower

than the stored one, then each node in the path produced by

this search receives trace, an allusion to the pheromone left

by ants on the path they passed. The new cost then becomes

the stored one, for further comparisons.

Figure 2: Trace trail for an arbitrary run.

The objective of storing traces is to form a sort of trail,

according to the most traveled paths. Figure 2 shows the

resulting trail for an arbitrary run, after the convergence to

the minimal path. The more traces had been added to a node,

the more highlighted it is. An important fact is that the states

that form the optimal path lie within the trail region, and

usually are more highlighted. Thus, the idea to give priority

for states with more traces is to start the auxiliary searches

in the region around the optimal path.

Figure 3: The synchronization between searches.

One important point of the parallelization regards the

synchronization among the cores. Figure 3 shows how

synchronization among searches works. This scheme was

based on the task issuer created by Xia & Prasanna [12],

for parallel Exact Inference on the Cell/B.E. The synchro-

nization process begin when a core emits an idle signal

and waits for synchronization. When the main core enters

the synchronization step and reads the signal, it fetches a

task from the heap and issues to the auxiliary core. After

receiving the task, the auxiliary core request DMA transfer

of data to completes its assembly, filling the tiles related

to the local search space, and then begin the execution of

the task. When execution ends, the updated heuristics are

transferred to the sparse matrix on the main memory. The

next task is then assembled by the auxiliary core, based on

the agent’s current position in the map, that will be the new

S parameter. This last step is repeated, interleaving with

execution, until the agent reaches the goal. Finally, a new

idle signal is emitted, restarting the synchronization.

Another important detail upon the parallelization regards

the distributed memory architecture. In order to hide the

latency of memory transfers, the processing of tasks on the

auxiliary cores are made using task buffers. Basically, each

auxiliary core has two task buffers on its local memory.

While a task is being transferred to the local memory of a

core by the DMA controller, another one is being processed

by this core. After processing, the core requests another task

by synchronization, and starts processing the task that was

transferred to the other buffer. Moreover, if we recall the

fact that a core only synchronizes for another task when

the search agent reaches the goal, we can realize that two

independent searches are being performed by each core at

the same time.

IV. EXPERIMENTAL RESULTS

To analyze the performance and effectiveness of the pro-

posed method, we did a series of experiments using different

scenarios. Since real-time search algorithms are commonly

used in digital games, we used different maps/graphs from



real game environments to perform the experiments. We

measured the total time to convergence to the shortest path

using the parallel method. We also evaluated the throughput

for three distinct lookaheads. Finally, we show the results,

measured in numbers of trials to convergence, for runs

performed in a more realistic digital game setting, in which

search should be interleaved with other tasks in the main

core.

Due to the speculative nature of the heuristic based search

algorithms, convergence is not regular for a given search.

Searches performed in regions with more local minima tend

to generate more task overlapping than the ones performed

on regions with fewer local minima. Thus, the speedup is

not uniform for all searches, and consequently, we did not

evaluate it directly. Also, tasks being executed in parallel

do not guarantee the order heuristic values will be updated.

Furthermore, the fact tasks can update overlapping regions

generates a non deterministic behavior. Thus, each result is

given by the mean of five executions of the same search.

The experiments were executed on IBM BladeCenter

QS20 blades. Each blade is composed by 2 Cell/B.E.

3.2GHz processors, with 1GB total memory. The Cell/B.E.is

a multi-core chip composed of one Power Processor Element

(PPE) and multiple Synergistic Processing Elements (SPE).

The PPE and SPEs are linked together by an internal high

speed bus called Element Interconnect Bus (EIB). All the

SPEs access data from a limited local memory, named Local

Storage. The EIB is responsible for DMA transfers between

the main memory and the SPEs Local Storage. For further

details, please refer to [3].

We have performed a total of 14 arbitrary searches,

distributed among 13 distinct graphs. We used the LSS-

LRTA* as the real-time search algorithm for both the main

and the auxiliary searches. The choice of the LSS-LRTA as

the search method, besides a better performance, given due

to a better control of the local search space, based on the

lookahead size. The lookahead is the parameter that delimits

the search depth. The size of the local search space implies

directly on the size of the tasks that will be created. This

allows a more precise evaluation of the data transfers, a

major factor on distributed memory systems. For the search

performed on the main core, a lookahead of 5 was used,

and for the auxiliary searches, the lookahead is 15, except

for the throughput evaluation, where the lookahead varies

between 5, 10, and 15.

Figures 4 and 5 show the total time to convergence to the

optimal path, for runs related to the 14 arbitrary searches.

The results, also shown in Table I, are organized as follows:

the first seven searches (1-7) are performed on smaller maps,

with fewer local minima, and consequently, requires less

time for converging to the optimal solution. The other seven

searches (8-14) are performed on larger and more complex

maps, with more local minima, therefore requiring more

processing and resulting in a slower convergence. For the

parallel execution, the numbers shown in the table represent

time segmentation for the three parts of the execution:

task processing, synchronization between cores, and task

management by the main core. Since the task processing

step corresponds to the search itself, the last 2 sections cited

imply on a overhead.
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Figure 4: Total time to convergence. Searches 1 to 7.
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Figure 5: Total time to convergence. Searches 8 to 14.

The average overhead calculated for this searches rep-

resents 38% of the total time. This overhead lead to a

performance loss, forcing the use of a smaller lookahead on

the main search. A smaller lookahead implies on a smaller

search space. Thus, a smaller area will be explored in the

planning step, which makes the run to convergence more

lengthy. However, even when using a small lookahead, we

observe from the results that the average gain can be at

about an order of magnitude. In addition, it is remarkable

that the synchronization time is even proportionally smaller

for the larger searches. This happens due to the fact that the



Section\Run 1 2 3 4 5 6 7
Processing 0.1678 0.0553 0.1336 0.0690 0.5614 0.5922 0.1219

Synchronization 0.2421 0.0829 0.1475 0.0984 0.3852 0.2977 0.1608
Management 0.0008 0.0003 0.0006 0.0004 0.0015 0.0024 0.0006

Total 0.4107 0.1385 0.2817 0.1677 0.9481 0.8923 0.2833
Sequential 0.9010 0.1598 1.0130 0.3941 4.5859 5.0894 0.5975

Section\Run 8 9 10 11 12 13 14
Processing 0.527 2.709 0.593 0.660 1.024 0.984 1.874

Synchronization 0.434 1.138 0.344 0.308 0.420 0.380 0.884
Management 0.003 0.015 0.003 0.004 0.005 0.006 0.007

Total 0.964 3.862 0.940 0.971 1.449 1.369 2.765
Sequential 7.150 51.410 6.480 11.420 15.836 12.050 30.280

Table I: Total time to convergence in the 14 different searches.

auxiliary cores just need to synchronize and ask for a new

task when they complete their current searches, as described

in Section III. Meanwhile, they have autonomy to assemble

their own tasks, based on the current node the agent is. In

general, there are gains in both kinds of searches, with the

larger ones showing more relative gains than the others, due

to a greater influence of the parallelization on the larger

searches.

Figures 6 and 7 show the throughput for the main and the

auxiliary cores, respectively, for the 12th search among the

14 ones. This search had been chosen due to its longer run

to convergence, which results in a greater number of tasks to

be processed, allowing a better evaluation of the throughput.

While the lookahead for the main search was set to 5, three

different values for the lookahead of the auxiliary ones was

chosen: 5, 10, and 15.

As observed, the throughput on the master core decreases

as the number of auxiliary cores increases. More cores being

used in parallel increases the time spent by the master

core with manage and synchronization, which explains the

reduction in the number of tasks processed. Furthermore,

the more auxiliary cores are used, the more searches are

performed, and consequently more areas of the map are

explored in parallel. Thus, the rate of heuristic values that are

updated increases, decreasing the total time to convergence.

Differently from the main core execution, where the

lookahead of the auxiliary searches does not have a great

influence on the throughput, its straightforward to note its

influence on the auxiliary cores, showed in Figure 7. In this

case, the throughput decreases as the lookahead increases.

These results reflect the two buffers way tasks are processed

on the auxiliary cores, in order to hide the latency between

memory transfers. Thus, while a task with lookahead 5
already fills this gap, increasing the lookahead makes the

task processing more time consuming, reducing the through-

put. However, this reduction in the throughput does not

imply on reduction of performance by the algorithm. In

fact, increasing the lookahead inflicts on a larger area of the

heuristics table to be updated and, therefore, on a reduction

of the total time to convergence.
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Figure 6: Throughput for the main core.
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Figure 7: Throughput for the auxiliary cores.

So far, all experiments performed here consider the un-

interrupted execution of the parallel algorithm. This means

that the calls are made in a successive way, without any other

kind of processing between them. However, real-time search

is characterized by interleaving planning with other steps,

such as execution. In some situations, such as digital games,

there are even other types of processing, not related to the



search itself. Thus, to obtain a more realistic measure of

performance, we modeled the time conditions to be similar

to a digital game scenario

In a digital game scenario, all the processing is done

inside a main loop called game-loop. Normally, this loop

is executed 30 to 60 times per second (the term generally

used is frames per second – fps) and is responsible for all

the main tasks such as computing all the game physics,

executing game AI and redrawing all the screen objects.

Thus, the path planner that runs in the AI is interleaved

with several other processing tasks. Sometimes it is even

executed asynchronously, in a rate that is much lower than

30fps.

The frame rate on current console games uses the syn-

chronization frequency fixed on 60Hz. This means that the

game-loop is executed 60 times in one second. Then, we can

consider the time between each game-loop execution to be

1/60 seconds. Thus, we can use this time interval to estimate

the game-loop size. To simulate an execution of a real-time

search under real conditions, we have to use an interval of

1/60 seconds between calls of the planning algorithm. This

interval represents the other processing jobs performed in the

game-loop, including those not related to the search itself.

Method\Run 1 2 3 4 5 6 7
Sequential 208 35 158 95 186 205 113

Parallel 34 13 22 12 9 7 15

Method\Run 8 9 10 11 12 13 14
Sequential 611 2058 727 1098 675 397 726

Parallel 13 20 26 26 8 7 5

Table II: Runs on a game execution scenario.
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Figure 8: Runs on a game execution scenario. Searches 1 to

7.

Figures 8 and 9 show results for the execution of the 14

searches with the time interval between calls. The results,

also shown on Table II, are measured in number of trials
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Figure 9: Runs on a game execution scenario. Searches 8 to

14.

to convergence, and presented on a logarithmic scale, for

better visualization. We see from the results that the gains are

much significant compared to the uninterrupted execution. In

certain cases, the gains are about two orders of magnitude

superior, being more than one hundred times faster than the

sequential execution. This gain is possible due to the time

interval inserted between calls. In this case, while the main

core is busy with other processing tasks, the auxiliary cores

continuously update the heuristic values in background. In

addition, the decision to delegate the task assembling to the

auxiliary cores, for current searches they are performing,

decreases the overhead caused by synchronization on the

main core and reduces the idleness of the auxiliary cores.

Thus, even without an effective participation of the main

core, we can observe the speedup on learning, compared to

the sequential execution of the search.

V. CONCLUSION

This paper has introduced a parallelization method to

speed up learning on real-time searches, and therefore the

run to convergence to the optimal path. While other methods

focuses on sequential solutions to speed up learning, we

showed a method that use searches in parallel and share the

acquired learning. We proposed a parallelization based on

the master/slave protocol, designed for distributed memory

systems. Basically, the searches executed in the auxiliary

cores uses larger lookaheads, sharing the updated heuristic

values, while keeping the constraints of a real-time search

on the main core tasks. We also designed a particular

sorting technique, based on swarm behavior, to assimilate

priority to the tasks executed by the auxiliary cores. Our

experiments have shown that the generated overhead may be

compensated by a smaller lookahead without compromising

the gains. The results showed that, using a lookahead three



times higher for the auxiliary searches, the average gains are

one order of magnitude higher, comparing to the sequential

execution of the same search. The results were even better

when a game execution scenario is considered. In this

scenario, while the execution of the search algorithm is

interleaved with other tasks in the main core, the parallel

executions in the auxiliary cores work on background,

significantly reducing the convergence time.
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