
Speeding Up Learning in Real-time Search

through Parallel Computing

Vinicius Marques Terra
Luiz Chaimowicz
Renato Ferreira

Universidade Federal de Minas Gerais

Departamento de Ciência da Computação

October 28, 2011



Introduction

Contextualization
Real-time search

• Traditional heuristic search (e.g., A*): plan all path, then execute:

Plan Action

• Real-time search: doesn't compromise time restrictions;

• fast response regardless the problem size;

• Interleave planning (in limited area) and plan execution:

Plan Action Plan Action Plan Action

SBAC-PAD 2011 1



Introduction

Real-time search
Learning step

• Only put a bound on search depth doesn't guarantee optimal solution;

• Real-time search must also be able to deal with dynamic
environments;

• Learning step: re�nes the heuristic values for visited states;

• Learning occurs between plan and action;

Convergence process:

�When the same planning task is solved repeatedly, the learning acquired

ensures the convergence to the optimal path.� (R. E. Korf - LRTA*, 1990)

SBAC-PAD 2011 2



Introduction

Real-time search
The problem

• Perform search/learn in a limited area due to real-time constraints
makes the run to convergence a lengthy process;

• How learning can be accelerated so that fewer searches/trials
are performed until the optimal path?

• Our approach - parallelism to speedup the convergence process;

SBAC-PAD 2011 3



Related Work

Previous attempts on speeding up convergence
Some relevant works

• FALCONS (Fast Learning and Converging Search) - proposes
alternatively way to select successors, showing its in�uence on
convergence speed;

• LRTA*(k) - alternate strategy to propagate learn: update heuristic
estimates of up to k states;

• Local Search Space LRTA* (LSS-LRTA*) - uses bounded A* to
search, and Dijkstra on visited states to learn;

SBAC-PAD 2011 4



Related Work

How our work di�ers from others

• Those works and many others focus on modifying the LRTA* original
structure to reduce convergence time;

• Strictly sequential behavior;
• We introduce the paradigm of parallel programming on the
convergence:

SBAC-PAD 2011 5



Related Work

How our work di�ers from others

• Those works and many others focus on modifying the LRTA* original
structure to reduce convergence time;

• Strictly sequential behavior;
• We introduce the paradigm of parallel programming on the
convergence:

SBAC-PAD 2011 5



Related Work

How our work di�ers from others

• Those works and many others focus on modifying the LRTA* original
structure to reduce convergence time;

• Strictly sequential behavior;
• We introduce the paradigm of parallel programming on the
convergence:

SBAC-PAD 2011 5



Related Work

How our work di�ers from others

• Those works and many others focus on modifying the LRTA* original
structure to reduce convergence time;

• Strictly sequential behavior;
• We introduce the paradigm of parallel programming on the
convergence:

SBAC-PAD 2011 5



Related Work

How our work di�ers from others

• Those works and many others focus on modifying the LRTA* original
structure to reduce convergence time;

• Strictly sequential behavior;
• We introduce the paradigm of parallel programming on the
convergence:

SBAC-PAD 2011 5



Related Work

How our work di�ers from others

• Those works and many others focus on modifying the LRTA* original
structure to reduce convergence time;

• Strictly sequential behavior;
• We introduce the paradigm of parallel programming on the
convergence:

SBAC-PAD 2011 5



Related Work

How our work di�ers from others

• Those works and many others focus on modifying the LRTA* original
structure to reduce convergence time;

• Strictly sequential behavior;
• We introduce the paradigm of parallel programming on the
convergence:

SBAC-PAD 2011 5



Related Work

How our work di�ers from others

• Those works and many others focus on modifying the LRTA* original
structure to reduce convergence time;

• Strictly sequential behavior;
• We introduce the paradigm of parallel programming on the
convergence:

SBAC-PAD 2011 5



Parallelization

Parallelization method
Description

• execution �ow - based on master/slave protocol:

• master also has execute the main search under real-time restrictions;

• search performed by auxiliary cores doesn't require real-time
constraints;

SBAC-PAD 2011 6



Parallelization

Parallelization method
Description

• Parallelization designed considering a distributed memory system;

• Hash → matrix;

• Data parallelism - task composed by:

• tile of the map - states on the
graph;

• current/start and goal points;

• heuristic values matching map
tile states - learning acquired;

SBAC-PAD 2011 7



Parallelization

Cell Broadband Engine
Architecture used to implement the parallelization

• Heterogeneous Multiprocessing -
9 Core Processor;

• PPE - Power Processor Element
(PowerPC 64-bits);

• SPE - Synergistic Processing
Element (SIMD RISC 256KB
LS);

• EIB - Element Interconnect Bus
(DMA);

SBAC-PAD 2011 8



Parallelization

Cell Broadband Engine
Implementation issues

• SPEs limited LS: code+data structures+execution stack on 256KB;

• No cache: hide DMA latency with double bu�ering;

Important consideration

Despite the Cell singular details, the parallelization proposed here �ts any
architecture;

SBAC-PAD 2011 9



Experimental Results

Experimental Results
Overall info

• LSS-LRTA* with lookahead up to 3× higher on the auxiliary cores;

• 14 random searches performed among real game maps;

• 7 with minor convergence time and 7 with longer convergence on
sequential run;

SBAC-PAD 2011 10



Experimental Results

Total Time to convergence

1 2 3 4 5 6 7

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Sequential Parallel

Search

R
u
n

 t
im

e
 (

s
)

8 9 10 11 12 13 14

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Sequential Parallel

Search

R
u
n

 t
im

e
 (

s
)

Section\Run 1 2 3 4 5 6 7

Processing 0.1678 0.0553 0.1336 0.0690 0.5614 0.5922 0.1219

Synchronization 0.2421 0.0829 0.1475 0.0984 0.3852 0.2977 0.1608

Management 0.0008 0.0003 0.0006 0.0004 0.0015 0.0024 0.0006

Total 0.4107 0.1385 0.2817 0.1677 0.9481 0.8923 0.2833

Sequential 0.9010 0.1598 1.0130 0.3941 4.5859 5.0894 0.5975

Section\Run 8 9 10 11 12 13 14

Processing 0.527 2.709 0.593 0.660 1.024 0.984 1.874

Synchronization 0.434 1.138 0.344 0.308 0.420 0.380 0.884

Management 0.003 0.015 0.003 0.004 0.005 0.006 0.007

Total 0.964 3.862 0.940 0.971 1.449 1.369 2.765

Sequential 7.150 51.410 6.480 11.420 15.836 12.050 30.280

SBAC-PAD 2011 11



Experimental Results

Throughput

Main core

0 1 2 3 4 5 6 7 8

0

2000

4000

6000

8000

10000

12000

d=5/5 d=5/10 d=5/15

Number of auxiliary cores

T
h
ro

u
g

h
p

u
t

Auxiliary cores

0 1 2 3 4 5 6 7 8

0

50000

100000

150000

200000

250000

d=5/5 d=5/10 d=5/15

Number of auxiliary cores

T
h
ro

u
g
h
p
u
t

SBAC-PAD 2011 12



Experimental Results

Game execution scenario
Description of experiment

• Previous experiments: uninterrupted and successive calls for plan step;

• Game scenario: game-loop contains other kind of processing tasks;

• One loop per frame - 60fps - 1/60s per loop;

• With 1 call for plan step per game-loop: 1/60s between calls;

SBAC-PAD 2011 13



Experimental Results

Game execution scenario
Trials to convergence1

1 2 3 4 5 6 7

1

10

100

1000

Sequential Parallel

Searches

T
ri
a

ls

8 9 10 11 12 13 14

1

10

100

1000

10000

Sequential Parallel

Searches

T
ri
a

ls
Method\Run 1 2 3 4 5 6 7

Sequential 208 35 158 95 186 205 113

Parallel 34 13 22 12 9 7 15

Method\Run 8 9 10 11 12 13 14

Sequential 611 2058 727 1098 675 397 726

Parallel 13 20 26 26 8 7 5

1graphics are on logarithmic scale
SBAC-PAD 2011 14



Conclusion

Final considerations

• Generated overhead may be compensated by smaller lookaheads
without compromising gains in terms of convergence;

• A lookahead 3x higher for the aux searches: average gains one order of
magnitude higher than sequential;

• Game execution scenario: background executions in the aux cores
signi�cantly reduce convergence time;

SBAC-PAD 2011 15



Conclusion

Questions?

SBAC-PAD 2011 16


	Introduction
	Related Work
	Parallelization
	Experimental Results
	Conclusion

